Evolvente

Die Evolvente (auch Involute) ist ein Begriff aus dem mathematischen Teilgebiet Differentialgeometrie. Jeder rektifizierbaren Kurve wird eine Schar von anderen Kurven als deren Evolventen zugeordnet, die durch die „Abwicklung“ von deren Tangente entstehen.

Anschaulich lässt sich die Evolvente als Fadenlinie darstellen: Ein flacher Körper, dessen eine Seitenfläche die Form der Ausgangskurve hat, wird auf ein Blatt Papier gelegt. Über die Ausgangskurve ist ein dünner Faden straff gespannt. Am äußeren Ende des Fadens wird ein Stift befestigt, dessen Spitze auf dem Papier aufliegt. Dann wird der Faden langsam von der Kurve abgehoben, wobei er stets straff gehalten wird. Die Kurve, die auf dem Papier entsteht, ist eine Evolvente.

Da der Faden anfangs eine beliebige Länge haben kann, gibt es zu jeder Kurve unendlich viele Evolventen, die alle parallel zueinander verlaufen, das heißt: Sind zwei Evolventen gegeben, so ist jede Normale der einen auch Normale der anderen, und alle diese Normalen sind zwischen den beiden Evolventen gleich lang. Jede Normale einer Evolvente ist also Normale aller Evolventen. Die Normalen der Evolventen sind einfach die Tangenten der gegebenen Kurve. Diese ist Hüllkurve (Enveloppe) der Evolventennormalen. Meist ist mit Evolvente die Kreisevolvente gemeint; dies ist jedoch nur ein Spezialfall der allgemeinen Evolvente.

Der Artikel ist auch in English und Español verfügbar.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.